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Novel Linearizer Using Balanced Circulators
and Its Application to Multilevel Digital
Radio Systems
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Abstract —A new miniaturized RF predistortion linearizer for a GaAs
FET power amplifier applicable to 256 QAM digital microwave systems is
presented. This linearizer, which is based upon the cuber linearizer tech-
nique [1}], utilizes circulators and a pair of diodes as fundamental compo-
nents. It allows not only miniaturization and easy adjustment of the circuit,
but also compensation for temperature variation in the circulators. The
fundamental characteristics of the linearizer and its effect on the 256
QAM signal are shown. The results show an improvement of more than
6 dB in the output back-off of the amplifier.

I. INTRODUCTION

ECENTLY, obtaining more bits per hertz has become

a major concern for designers of digital microwave
radio systems. In order to increase the number of bits
assigned to the frequency band, multilevel modulation
systems such as 16 QAM have been developed [2], and
higher level modulation schemes such as 64 QAM and 256
QAM are now being investigated [3].

Since high-level modulation schemes have various am-
plitude levels, they are very sensitive to distortion noise [4].
In addition, since common amplifiers are used in the 256
QAM multicarrier system to reduce the cost and size of the
repeater system, it is essential that the power amplifier in
this system be highly linearized. Therefore, an effective
linearization technique is needed to produce more practical
and economical repeater equipment.

The predistortion (PD) method has been recognized as
the most effective and practical linearization technique
through previous communications system applications,
such as microwave SSB-AM systems [5], [6], mobile sys-
tems [1], and satellite communications systems [7]-[13].
Several types of linearizers have been proposed. In these
linearizers, after dividing an input signal into two paths
(linear path and distortion path), the distortion component
is produced by the amplifier in the distortion path and
combined with the fundamental signal component at the
output. Otherwise, as is described in detail in the following
section, the double-loop configuration is adopted to sup-
press the fundamental signal component in the distortion

Manuscript received August 10, 1988; revised March 10, 1989

The authors are with the NTT Radio Communication Systems Labora-
tories, 1-2356 Take, Yokosuka-shi, Kanagawa-ken, 283-03 Japan

IEEE Log Number 8928332.

path. However, in the first configuration described above,
suppression of the signal component in the distortion path
is not sufficient. Therefore, distortion and signal cornpo-
nents are simultaneously changed by control signals, re-
sulting in difficulty of adjustment. With the latter conligu-
ration, circuit configuration and adjustment become more
complex because of the double-loop configuration.

In this paper, a new predistorter is proposed which is
suitable with regard to compactness, ease of adjustment,
and wide-band compensation. The linearizer uses a cir-
culator in the distortion generator to obtain high signal
component isolation, and in the variable phase shifter to
compensate for temperature variations. The nonlinearity
compensation characteristics of the linearizer and their
effect on 256 QAM signal amplification are also described.

II. CirculT CONFIGURATION OF THE NEWLY
DEVELOPED PREDISTORTION LINEARIZER

Fig. 1 shows the basic circuit configuration of the lin-
earized amplifier assuming a cuber linearizer {1]. The vec-
tor diagram of the signal and distortion component and
that of AM—~AM and AM-PM conversions in each stage’
are also shown [1]. In order to compensate for the distor-
tion component of the amplifier, distortion produced by
the linearizer should have equal amplitude and opposite
phase to that of the amplifier. When this condition is
satisfied, AM-PM conversion of the linearizer has reverse
characteristics to those of the amplifier. The phase shifter
placed in the cubic path in Fig. 1(a) can be removed into
the main path, as shown in Fig. 2.

In the conventional predistortion linearizer [9], the dis-
tortion generator includes two amplifiers. By changing the
drive level of each amplifier, the distortion it produces is
changed. Consequently, if the signal output level is ad-
justed by attenuators so that each signal component is
canceled at the output, this generator can produce only the
distortion component. However, to cancel the signal com-
ponent, the output power and the phase must be adjusted.
Accordingly, this configuration is not suitable for easy
adjustment and compactness. To overcome these prob-
lems, a novel predistortion linearizer, which is based upon
the cuber linearizer technique, was invented. It uses a
circulator and diodes in the distortion generator to obtain
high signal component isolation.
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Fig. 1. Basic circuit configuration and vector diagram of the predistor-
tion linearizer. (a) Basic circuit configuration. (b) Vector diagram.
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The circuit configuration is shown in Fig. 2. The input
signal is divided into two paths, the linear path and the
distortion path, by the input hybrid. The linear path (main
path) is composed of a delay line and a variable phase
shifter. The distortion path (cubic path) is composed of a
distortion generator and the variable attenuator. In this
configuration, the distortion generator is composed of a
circulator and a pair of diodes connected in an antiparallel
fashion.

The signal from the input port is fed to the nonlinear
circuit, composed of diodes and a matching circuit. When
the signal level is low, the impedance of the diodes matches
that of the circulator. Consequently, the input signal does
not come out at the output port. However, as the input
level increases, the impedance of the nonlinear circuit
changes. As a result, at the output port, the signal comes
out due to the mismatching condition. This output signal
corresponds to the distortion component of the nonlinear
circuit,

The current i(¢) which flows into a pair of diodes is
given by the following equation using the voltage v(7),
which is applied to a pair of diodes connected in an
antiparallel fashion:

1(1) = Iy (exp(av (1)) —exp(—av(2))) (1)

where I, and « are constants.
When the input voltage to the distortion generator V,_ is
applied, the output signal ¥, becomes (see the Appendix)

V TV, ka3V 3 2
| out|_| || 1n|_2Y0| m| ()

which means that only the third-order distortion will ap-
pear, and the signal component V,, is suppressed.

An example of the temperature characteristics of the
transmission phase in a circulator is shown in Fig. 3. As
can be seen from this figure, the phase shift in a circulator
decreases as the temperature increases. When a circulator
is used only in the distortion path, the phase relation
between the signal component and the distortion compo-
nent also decreases with increasing temperature.

To compensate for temperature changes in a circulator,
the phase shifter in the linear path includes another circu-
lator. As a result, the phase shifts in the linear path and
the cubic path change by the same amount as the tempera-
ture changes. Therefore, the temperature characteristics of
the phase shift in both circulators are canceled at the
output.

III. CHARACTERISTICS OF THE NEWLY DEVELOPED
PREDISTORTION LINEARIZER

The output of the fundamental signal component and
fifth-order distortion component in the distortion genera-
tor in Fig. 2 should be small to construct a cuber lin-
earizer. However, the third-order distortion component
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should be large so that the distortion component of the
next amplifier can be compensated by it.

The input—output characteristics of the distortion gener-
ator are shown in Fig. 4. More than 15 dB suppression of
the fundamental signal component was achieved, which
was sufficient to make the distortion path independent of
the signal component. The fifth-order distortion compo-
nent was more than 12 dB smaller than the third-order
distortion component, which was adequate for the cuber
linearizer. The deviation of the third-order distortion from
5.9 to 6.2 GHz was less than 1.0 dB, and a very broad
band third-order distortion generator could be con-
structed. ‘

The distortion improvement factor when the predistor-
tion linearizer is equipped with a high-power amplifier is
shown in Fig. 5. The linearizer was adjusted at the point
where output back-off was 8 dB, where third-order distor-
tion reduction of more than 20 dB was achieved. Fig. 6
shows the frequency characteristics of the distortion im-
provement factor. In the frequency range from 5.9 to 6.2
GHz, an improvement factor of more than 10 dB was
achieved.

One of the authors has evaluated the distortion reduc-
tion U as a function of amplitude error 8 and phase error
A® [1]. This is expressed as follows:

U=10log(1+10%/1°-2.10%/.cos A®)  (dB) (3)

where § is the error from the equal amplitude condition,
and A@ is the error from the inverse phase condition.
When the amplifier is excited with a single-tone signal,

(4)
a unique relationship between AM-AM and AM-PM
conversions can be obtained [5]:

{R*(a)-1}tan®,
R*(a)+1

e;(t) =acos(wyt)

¥(a)=tan"! (%)

where R(a) is the AM-AM conversion, ¥(a) is the
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AM-PM conversion, and @, is the third-order distortion
phase. From this equation, the AM—AM conversion R(a)
and the AM-PM conversion ¥(a) are related through the
third-order distortion phase ®,. Measurement results of
the nonlinearities of a 6 GHz band FET are shown in Fig.
7. Additionally, the calculated relationship between gain
compression and phase lag for the third-order distortion
phase @, is plotted. It is found from this figure that the
deviation of the third-order distortion phase ®; of a
6 GHz band FET in the frequency band is about 10°. Fig.
8 shows the input—output characteristics of a 6 GHz band
FET amplifier. When output back-off is more than 4 dB,
the deviation of the third-order distortion amplitude com-
ponent is less than 2 dB. Considering these results, the
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(a) Input to output power transfer characteristics. (b) AM-PM charac-
teristics

distortion reduction U is estimated to be 10 dB from (3),
which is consistent with the results shown in Fig. 6.

Fig. 9 shows a block diagram and level diagram of a
linearized FET amplifier equipped with the new linearizer.
In order to increase the gain of the high-power amplifier in
the final stage, another one is installed before it. The
output power of the high-power amplifier is 41 dBm at the
1 dB gain compression point.

A variable attenuator is inserted between the two ampli-
fiers so that the operating point of the high-power ampli-
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fier can be changed. Fig. 10 shows input-to-output transfer
characteristics of the new linearizer: Fig. 10(a) shows in-
put-to-output power transfer characteristics, and Fig. 10(b)
shows AM—-PM characteristics of the linearizer. The gain
expansion characteristic can be seen near the saturation
point in Fig. 10(a), although it is small. As was explained
in Fig. 1, the distortion produced in the linearizer has
reverse phase to that of the amplifier. Therefore, AM—PM
produced in the linearizer also has reverse characteristics
to that produced in the subsequent amplifier. The insertion
loss of the linearizer was about 8 dB, and the deviation of
the gain of the linearizer and linearized FET amplifier at
small signal was less than 1.0 dB in the frequency band
between 5.9 and 6.2 GHz. Improvement in AM—PM when
the linearizer is equipped is shown in Fig. 11. AM-PM
conversion is improved to 1/3 at the point where output
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Circuit configuration of the linearizer fabricated on a Teflon
substrate.
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back-off is more than 3 dB. Fig. 12 shows the temperature
characteristics of third-order distortion in a 20 W high-
power amplifier equipped with the linearizer described in
the previous section. When the temperature of the lin-
earizer was changed, a distortion improvement factor of
more than 10 dB could be obtained in the temperature
range between 0 and 50°C. Changes in circulator charac-
teristics due to temperature variations could be eliminated
over a wide temperature range.

IV. APPLICATION OF THE LINEARIZER
TO 256 QAM SYSTEM.

In this section, the transmission characteristics of 256
QAM signals in a nonlinear amplifier are investigated, and
the effect of the predistortion linearizer described in the
earlier section is examined. A photograph of the linearizer
fabricated on a Teflon substrate is shown in Fig, 13.

The experimental setup for examining 256 QAM trans-
mission characteristics is shown in Fig. 14. One primary
carrier has a transmission capacity of 100 Mb/s, the
symbol rate is 12.5 Mbaud, and the spectral shaping is 50
percent cosine roll-off. ATT1-and ATT?2 are used to change
output back-off with the input pcwer for the receiver fixed.
ATT3 is used for changing the CNR ratio.

AM-PM conversion of FET amplifiers is smaller than
that of TWT’s, as has been reported elsewhere [14]. There-
fore, we can use FET amplifiers at a lower back-off point
than TWT -amplifiers when multilevel QAM signals pass
through them [15]. We used FET amplifiers for amplifica-
tion of multilevel QAM signals. The characteristics of the
FET amplifier used for the experiment were the same as
those shown in Fig. 8.
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Improvement of distortion noise by the linearizer at the point
where the output back-off is 8 dB.

The transmission characteristics of 256 QAM signal in a
nonlinecar amplifier with and without the predistortion
linearizer are shown in Fig. 15. When the linearizer was
used, output back-off was improved by 3 dB at the point
where the bit error rate was 10 ¢, and by more than 6 dB
at the point where the bit error rate was 1077, Thus, the
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linearizer should prove very effective for high-power am-
plification for a multilevel modulation system.

Improvement in distortion noise with the linearizer when
two 256 QAM multicarriers are commonly amplified is
shown in Fig. 16. The upper spectrum is that without the
linearizer, and the lower one is that with it at the point
where output back-off 1s 8 dB. Distortion noise was re-
duced 10 dB for the wide-band signals by using the
linearizer. ’

V. CONCLUSION

A new miniaturized RF predistortion linearizer for a
GaAs FET power amplifier used in 256 QAM digital
microwave systems was presented. This linearizer, based
upon the cuber linearizer technique, utilizes circulators and
a pair of diodes as fundamental components. Using the
configuration proposed in this paper, distortion reduction
of more than 10 dB can be obtained over the 300 MHz
bandwidth. It was also verified that distortion reduction
could be achieved over a wide temperature range from 0 to
50°C. Additionally, the effect of the linearizer on 256
QAM signal was investigated. The results showed a more
than 6 dB improvement in output back-off.

APPENDIX

Equation (1) is expanded by Tayler series into

i(l)=2]0{a-v(l)+a—3v3(t)}. (A1)

3!

As a result, the admittance of a pair of diodes is given by
i(t) a’

=——=2]a+—0%(t)}.

o(1) O{a T )}

If the matching circuit transforms 2/ja into the admit-
tance of the circulator, ¥, 1s expressed as follows:

Y, =Y, + ka**(t) (A3)

where k is a constant. Therefore, in the circuit configura-
tion of the distortion generator shown in Fig. 2, the
reflection coefficient at the plane a—a’ is given by the
following equation:

Y, (A2)

Y, —Y kav?(t
[ o] _[ka®(0) | "
Y, +Y, 2Y,
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